
Multi-Agent System Design Based on Security Policies

Zeus Andrade Zaldívar, Ma. De los Ángeles Junco Rey, Jorge Adolfo Ramírez Uresti,
José Arturo Tejeda Gómez, Enrique David Espinosa Carrillo

Instituto Tecnológico y de Estudios Superiores de Monterrey campus Estado de México.
Atizapán de Zaragoza, México.

{zandrade, ajunco, juresti, jtejeda, enrique.espinosa} @itesm.mx

Abstract. Security plays a major role in modern computer systems and multi-
agent systems are not an exception. Security and multi-agent systems have been
related on several works but little work has been done in relating security with
agent oriented software engineering. In this paper we discuss the use of security
policies to guide the design process for multi-agent systems and describe
extensions to the GAIA methodology for this purpose. The proposed extensions
are illustrated with the design of a file sharing system based on the MLS
security model.

1 Introduction

Nowadays multi-agent systems provide a good alternative for the development of
large and complex systems. Multi-agent systems are particularly useful when the
system aims to recreate a real world organizational structure and when the presence of
autonomous, intelligent, proactive, learning capable and social entities is needed to
interact in distributed systems.

The majority of modern systems operate on open environments where they are
susceptible to attacks, this makes necessary to take security as one of the more
important elements of any modern system. A lot of research has related security and
multi-agent systems; however, most of it had been focused on the final stages of the
system development process, especially when the system is already implemented or
even deployed. Identifying security requirements based on the system behavior
instead of controlling the system behavior according to the security requirements is a
hard task and commonly leads to the introduction of vulnerabilities in the system [1],
[2], [3], [4].

Little work has been done focusing on the incorporation of security through the
whole process of the system development. Mouratidis in [5] proposes extensions to
the TROPOS methodology to accommodate security. Following this approach, in this
paper we propose extensions to the GAIA methodology [6], [7] to accommodate
security restrictions and we present recommendations to guide the design process
according to security policies.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 87-96

2 Extending the GAIA methodology

Security is established through policies and mechanisms that ensure integrity, privacy
and availability of the resources that can be provided, required or present in the
system. Security policies for multi-agent systems could be seen as sets of rules
restricting the relationships between the system elements in terms of privacy, integrity
and availability. The more important system elements are: Agents, users and
resources.

There may be a lot of different types of rules according to the kind of entities they
restrict or the properties they are based on. Rules can force an entity to perform an
action, make an action triggers another, set conditions for an action, control the way
an action is performed, control the number of entities and resources, or restrict the
system behavior in many other ways. Thousands of different kinds of rules can be
defined according to the specific needs and requirements of a system.

It is not realistic to think in a design methodology that takes all possible kinds of
rules. For this reason in this work we take under consideration a limited set of rule
types:
1. Restrictions on the effective capabilities of entities. Conditions that must be

fulfilled to enable an entity to perform an action. These restrictions cover any kind
of action performed by an agent or user such as reading, writing, creating or
consuming resources and create, suspend, resume, migrate, and terminate an agent.

2. Restrictions over the interaction between entities. Conditions that must be fulfilled
during the interaction of two entities.

3. Restrictions on the properties or attributes of entities. Conditions that restrain the
attributes of an entity and that must be always fulfilled.
This set includes rules to represent and model policies like the multi level security

[8] and the commercial model [9]. These models are representative on computer
security, so the set of rules to represent them are also representative.

To illustrate the use of security policies on the design of multi-agent systems we
use as a case of study a hypothetical distributed file access system based on Bell and
LaPadula multi-level security model [8] (military security model). This security
model is summarized in the following section.

2.1 Multi level security

This model establishes rules for two kinds of entities: objects, which are passive
entities and cannot perform any activities, and subjects, which are active entities
performing actions and accessing resources (objects). The model can be represented
by the following rules:
R1. Subjects have only one level.
R2. Objects have only one level.
R3. All subjects have a set of labels.
R4. All objects have a set of labels.
R5. For every object there is a set of permissions for writing and reading.
R6. Reading is allowed if the subject’s level is greater than or equal to the object’s
level and the subject’s label set is a sub-set of the object’s label set.

88 Z. Andrade, Ma. Junco, J. Ramírez, J. Tejeda, E. Espinosa

R7. Writing is allowed if the subject’s level is lesser than or equal to the object’s level
and the subject’s label set is a sub-set of the object’s label set.
R8. An authentication mechanism is necessary
R9 . All subjects must be authenticated before accessing the system.

The primary objective of this model is to assure privacy. Through the mandatory
and discretionary controls the model guaranties that information can be accessed only
by authorized entities. Authorization is contained on the levels and labels on every
entity.

2.2 Designing the system

The system to be consists of a shared file system based on agents and the multi-level
security model. Although this system does not reflect the real complexity of most
modern multi-agent systems, it has been chosen as a case of study because its
simplicity allows a simple illustration of the design process based on security policies.

In the following sections we present the process of design for this system according
to the phases established by the GAIA methodology and incorporating extensions and
guidelines to preserve the security requirements (the security policy).

2.3 The analysis
In this phase of the GAIA methodology, the system specification is modeled through
the identification of the organizational structure and the specification of preliminary
roles, environment and interaction models. The security policy is part of the system
specification so we propose to model it on this phase.

The first stage of this phase is to establish an organizational structure for the agents
on the system. In many cases the security policy will define explicitly or implicitly the
organizational structure or structures that should be used. For the case of study we
identify a single organizational structure.

The GAIA methodology uses only the system requirements to identify and design
roles, protocols and the environment, the first extension we propose to this
methodology is to use a security policy to identify those elements. This is done
through two new types of models, a restrictions model, which represents the security
policy, and a behavior model, which models the system behavior restricted by the
security policy.

The security policy restricts entities, so it must be modeled before modeling
entities into roles and resources. The restrictions model must present all the rules or
restrictions of the policy and the relationship between the rules and the entities (active
and passive) of the system. The restriction model for the case of study is shown on
figure 1.

The restrictions model presents all entities, resources, actions and interactions
restricted by the security policy but there may be other elements present in the system
requirements which are not restricted. The behavior model should represent
graphically all restricted and unrestricted elements. On figure 2 and 3 we present a
graphical notation and a behavior model for the case of study.

Multi-Agent System Design Based on Security Policies 89

Entity: User

Attribute: Level
Restriction 1: Unique value {unclassified,
classified, secret, top-secret}
Attribute: Labels
Restriction 3: set of values

Entity: File

Attribute: Level
Restriction 2: Unique value {unclassified,
classified, secret, top-secret}
Attribute: Labels
Restriction 4: set of values

Attribute: Permissions
Restriction 5: set of values {read, write}

Restriction 8: Authentication

An authentication mechanismmust be
provided within the system

Restriction 6: Simple security

Entity: User
Action: Read file
Target: File
Pre-conditions: (User.level>=File.level) ̂
(User.labels C File.labels) ̂(readЄ
File.permissions)

Restriction 7: * property

Entity: User
Action: Write file
Target: File
Pre-conditions: (User.level<=File.level) ̂
(User.labels C File.labels) ̂(writeЄ
File.permissions)

Restriction 9: Authentication 2

Entity: User
Action: Init session
Target: System
Pre-conditions: The user must be
authenticated before using the system.
Post-conditions: Any user using the
systemhas been authenticated

Fig. 1. Preliminary restrictions model

Subject Object Attribute

Interaction
Restriction

Action
Restriction Restriction

Fig. 2. Graphical notation for the behavior model

UserLevel

Labels Permissions

File

Level

Labels

Read

R6

Write

R7

R1

R3

R2

R4

R5

R8

R9

Fig. 3. Preliminary behavior model

Once we have established the restrictions and behavior models we can use them,
along with the system specification, to generate the environment, roles and interaction
models. Roles can be identified in the behavior model as subjects, resources as objects
and interactions as double headed arrows connecting subjects.

An environment model, as proposed in [7], for the case of study is presented
below:

READS: File, Users, Sessions
CHANGES: File, Sessions

The role model, as defined on [7], presents roles along with their description,
actions, protocols, permissions and responsibilities. Permissions allow the designer to
express the effective capabilities associated to the role and the safety responsibilities
allow express conditions (invariants) that must always be maintained. However these
two elements of the role schema are not useful to describe restrictions over the actions
that the entity can perform. The second proposed extension is to use references to the

90 Z. Andrade, Ma. Junco, J. Ramírez, J. Tejeda, E. Espinosa

restrictions defined on the restriction model instead of using permissions and safety
responsibilities to describe the effective capabilities of the role. This extension does
not apply to roles that are not restricted by the security policy. The following schema
represents the role for the case of study.

Role schema: User
Description: Access the files in the system.
Protocols and Activities: InitSession, ReadFile, WriteFile, EndSession
Responsibilities: Liveness: USER = InitSession.(ReadFile | WriteFile)*.EndSession
Restrictions: R1, R3, R6, R7, R9

The interaction model consist of a set protocols defined by the interactions between

roles. The interactions can be identified on the restrictions and behavior models, these
interactions must be modeled as protocols. Restrictions over interactions are
referenced in the schema for the protocols. The third proposed extension is to
aggregate restriction references to the protocol schemas as defined in [7]. The
interaction model for the case of study is shown in figure 4.

Partner: ?

Protocol name: InitSession

Initiator: User Partner: ?

Description: Allows the user to start a
session in the system

Protocol name: EndSession

Initiator: User

Description: Allows the user to terminate his
current session

User ID, Password

Token

User ID

Restrictions: R8, R9 Restrictions:

Fig. 4. Preliminary interaction model

The security policy, captured with the restrictions and behavior models define the
security requirements of the system. The environment, role and interaction models are
build parting from the restrictions and behavior models, the protocol and role schemas
include references to the restrictions applied to the element they represent.

The last stage of the analysis is to establish the organizational rules. We propose
only one recommendation for this stage, security restrictions that are not concerned to
entities, their attributes, actions and interactions can and should be modeled as
organizational rules. Organizational rules for the case of study are presented below.

IntiSession (User)1
IntiSession (User) ReadFile (User)
IntiSession (User) WriteFile (User)
IntiSession (User) EndSession (User)

The GAIA methodology establishes as output of the analysis phase the preliminary
models of environments, roles and interactions; we propose to add the preliminary
models of restrictions and behavior (called preliminary because they are to be updated
in the following phase).

2.4 The architectural design
This phase is focused on the establishment of the final structure for the system. On
this phase all preliminary models are refined until they become final models.

The first stage of this phase is to define the organizational structure for the system.
Security requirements (policies) diverge greatly from one system to another so the use
of organizational patterns, as described in [7], may be restricted to systems that adopt

Multi-Agent System Design Based on Security Policies 91

the same security policy. The organizational structure for the case of study is
presented underneath.

∀i, User depends on Aunthenticator ∀i, User depends on FileManager
∀i, User peer User ∀i, Authenticator peer FileManager

The next stage on the architectural design is to complete and refine the role model.
The GAIA guidelines should be used during this stage; this means that new roles
(organizational roles) must be added following the organizational structure, the new
roles must be evaluated to verify that all restrictions on the security policy are
fulfilled. The fourth proposed extension is the definition of security roles, this kind of
roles are not explicitly needed by the organizational structure or the security policy
but that are needed to satisfy some restrictions. Security roles can be identified
through the protocols for which one or both entities (initiator and partner) were not
identified in the preliminary interactions model, as an example, in the case of study
we defined the protocol InitSession, which is restricted, in the preliminary interactions
model the partner for the entity user was not identified and this identifies the need for
a security role. Also, restricted actions like ReadFile and WriteFile imply the
existence a security role which will be in charge of verifying the fulfillment of the
restrictions associated to these actions. Below we present the role schemas for the
new roles, which along with those defined on the preliminary role model integrate the
final role model.

Role schema: Authenticator
Description: Authenticates users trying to acces the system and manages a list of current users
Protocols and Activities: InitSession, AuthenticateUser, EndSession
Responsibilites: Liveness: AUTHENTICATOR = ((InitSession.AuthenticateUser) | EndSession)ω

Restrictions: R8, R9

Role schema: FileManager
Description: Controls the access to the files in the system.
Protocols and Activities: ReadFile, WriteFile
Responsibilites: Liveness: FILEMANAGER = (ReadFile | WriteFile)ω

Restrictions: R6, R7

Partner:Authenticator

Protocol name: InitSession

Initiator: User Partner:Authenticator

Description: Allows the user to start a
session in the system

Protocol name: EndSession

Initiator: User

Description: Allows the user to terminate his
current session

User ID, Password

Token

User ID

Partner: FileManager

Protocol name: ReadFile

Initiator: User Partner: FileManager

Description: Allows the user to read a file

Protocol name: WriteFile

Initiator: User

Description: Allows the user to write a file

User ID, File ID, token

File

User ID, File ID
Token, file

Restrictions: R8, R9 Restrictions:

Restrictions: R6 Restrictions: R7

Fig. 5. Interactions model

The next stage is to refine the interactions model. The GAIA methodology
provides the necessary guidelines to perform this action. New protocols may be added
during this stage and it must be verified that they comply with all security restrictions
present on the policy. In figure 5 we present the protocol schemas that complete the
interactions model.

92 Z. Andrade, Ma. Junco, J. Ramírez, J. Tejeda, E. Espinosa

The aggregation of new roles and protocols could introduce inconsistencies with
the security policy, thus a review and refinement of the restrictions and behavior
models is necessary. The refinement of those models requires to evaluate all security
restrictions and to modify them or create new restrictions to obtain a new security
policy equivalent to the original but including all new roles and interactions. The
refined models of restrictions and behavior are shown in figures 6 and 7.

Restriction 6: Simple security

Entity: User
Interaction: Read file
Partner: FileManager
Pre-conditions: (User.level>=File.level) ̂
(User.labels C File.labels) ̂(readЄ
File.permissions)

Restriction 7: * property

Entity: User
Interaction: Read file
Partner: FileManager
Pre-conditions: (User.level<=File.level) ̂
(User.labels C File.labels) ̂(writeЄ
File.permissions)

Restriction 10: Preserve R6, R7

The FileManager shall not have acces to
read or write files

Restriction 9: Authentication 2

Entity: User
Interaction: InitSession
Partner: Authenticator
Pre-conditions: The user must be
registered in the system.
Post-conditions: User gets authenticated

Fig. 6. Refinement of the restrictions model

UserLevel

Labels Permissions

File

Level

Labels

Read

R6

Write

R7

R1

R3

R2

R4

R5

R9

R10

FileManager

Authenticator

InitSession

R8

EndSession

Fig. 7. Refinement of the behavior model

The design process must iterate on this phase until the roles, interactions,
restrictions and behavior models become fully compliant with the system
requirements and especially with the security policy.

2.5 The detailed design
On this phase the main objective is to find a match between agents and roles.

Security restrictions play an important role during this phase because in many cases
they define if it is possible for a single agent to play different roles. For our case of
study, the agent model is presented below.

UserAgent plays User
FileSystem plays FileManager, Authenticator

The fifth proposed extension is the inheritance of restrictions from the roles to the
agent classes. Agent classes are designed to play one or more roles, so an agent class
should inherit restrictions form the roles it plays. It is necessary to verify the
application all restrictions, this can be done through a table containing all entities
(agents and objects), their restrictions and how the restrictions will be applied. Table 1
presents these elements for the case of study.

Multi-Agent System Design Based on Security Policies 93

Entity Agent Restriction Aplication

User UserAgent R1 The attribute level restriction must be applied to the agent.
 R3 The attribute labels restriction must be applied to the

agent.
 R9 The agent must perform an authentication procedure.

Authenticator FileSystem R8 The agent must provide an authentication mechanism.
 R9 The agent must authenticate any UserAgent agents and

deliver a token if the authentication is succesfull.
FileManager FileSystem R6 The agent must verify the restriction before delivering the

file to the UserAgent.
 R7 The agent must verify the restriction before replacing the

file obtained by the user.
 R10 This agent should not be able to read or write files by it

self.
File R2 The attribute level and it’s restriction must be applied to

the object.
 R4 The attribute label and it’s restriction must be applied to

the object.
 R5 The attribute permissions and it’s restriction must be

applied to the object.

Table 1. System restrictions table.

The next step on the detailed design is to build a services model, on this model all
activities, actions and interactions are detailed. This model can be constructed
following the guidelines provided by the GAIA methodology. For the case of study,
the services model is shown in table 2.

Service Pre-conditions Post-conditions Inputs Outputs
StartSession The user must be

registered in the system
The user gets a token and
starts a session

User id and a
password

A token
for user

ReadFile The token must be correct,
the file must exist and R6
must be fulfilled

The file is readed by the user User id, file
id and a
token

The file to
read

WriteFile The token must be correct
and R7 must be fulfilled

The file is written by the user User id, file
id, new file
and a token

None

EndSession The user must have an
open session in the system

The user session is terminated
and the token invalidated

User id none

Table 2. Services model

The detailed design is the simplest phase of the methodology, however, the
implementation of the systems relays completely on the output of this phase, this
implies that if any of the restrictions were lost during the previous phases or in this
one, the implementation of the system will not be compliant with the security policy.

It is necessary to keep on the output of this phase the restrictions and behavior
models because they are useful to guide the implementation process towards the
compliance with the security policy.

94 Z. Andrade, Ma. Junco, J. Ramírez, J. Tejeda, E. Espinosa

2.6 The designed system

The obtained design consists on the final models: agents, services, restrictions and
behavior along with the system restrictions table, the organizational rules and the
organizational structure.

The security policy is present in all models. In the system restrictions table, every
agent class has a set of restrictions inherited from the roles it plays and that must be
implemented on the system. In the same way, all protocols have a set of restrictions to
fulfill. The organizational rules preserve the rest of the security restrictions not
directly associated with a role or protocol.

2.7 Implementing the designs

The GAIA methodology does not deal with the implementation process and being the
basis for this work, the extensions proposed are limited to the design process.

There are many different agent frameworks which allow the creation and
deployment of multi-agent systems. A combination of GAIA with the Jade framework
[10] has been proposed in [11] and [12]. Jade also provides a security add-on based
on rules [13] which is suitable for the implementation of systems designed following
the extensions proposed.

Agent classes in the GAIA agent model can be directly mapped to Jade agent
classes and its actions, protocols and services as Jade behaviors to be adopted by
agents.

The security add-on for Jade includes features like authentication, permissions and
secure messaging between agents. Authentication allows users to authenticate
themselves with the system, secure messaging allows the use of cryptography to sign
or encrypt messages during agent interactions and permissions allow or deny users
and agents to perform certain actions like creating, killing, pausing or terminating an
agent, sending messages to certain agents, accessing certain java classes, etc.

In most of the cases, rules from the restrictions model can be directly translated
into rules from the Jade security add-on.

A software tool named MASSD has been created to allow an easy way to
implement systems designed as proposed here. The application allows the user to
generate all models here described and finally to automatically generate Jade code to
implement agents and services.

3 Conclusions and future work

Security is one of the major issues to address when developing a multi-agent system.
The overall system behavior must be controlled according to the security
requirements of the system. On this paper we proposed the use of security policies to
guide the design process of a multi-agent system and we presented a set of guidelines,
recommendations, models, schemas and extensions to the GAIA methodology for this
effect. We also established a relationship between the security policy, its restrictions

Multi-Agent System Design Based on Security Policies 95

and the elements of multi-agent systems and the necessary elements for modeling
security restrictions within the GAIA methodology.

A system designed following the guidelines proposed and using the extensions
described should be compliant with the security policy used. This contributes to
reduce vulnerabilities in the system architecture. A real world test case for the
benefits obtained with this methodology is part of the future work.

The presented work is focused on a representative set of rules or restrictions that
may be present on a security policy, a generalization of the restriction types, the
incorporation of validation mechanism to probe the preservation of the security policy
and the study of different security models to establish security organizational patterns
are part of the future work.

The systems designed following this work can be easily implemented using the
Jade framework along with its security add-on. A software tool for automatic Jade
agent code generation has been developed.

The work is being applied to generate a secure system architecture for the @lis
technet project [14].

References

1. Lhuillier, N., Tomaiuolo, M., Vitaglione, G. Security in Multiagent Systems, JADE-S
goesdistributed. exp: in search for innovation, vol 3. no. 3. Septiembre de 2003.

2. Jim Tam, J., Titkov, L., Neophytou, C. Securing Multi-Agent PlatformCommunication.
Department of Electronic Engineering, Queen Mary, University of London.

3. Noordende, G., Brazier, F., Tanenbaum, A. A security framework for a mobile agent
system. Ámsterdam University.

4. Kagal, L., Finin, T., Joshi, A. Developing Secure Agent Systems Using Delegation Based
Trust Management. University of Maryland.

5. Mouratidis, H., Giorgini, P., Manson, G. Modelling secure multiagent systems.
Proceedings of the AAMAS conference. 2003.

6. Zambonelli, F., Jennings, N., Wooldridge, M. Developing multi-agent systems: the gaia
methodology. ACM transactions on software engineering and methodology. 2003.

7. Wooldridge, M., Jennings, N. R., Kinny, D. The Gaia methodology for agent oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3 (3):285–
312, 2000.

8. Bell, D. E. LaPadulla, L. Computer security model: Unified exposition and multics
interpretation. Technical report ESDTR-75-306. 1975.

9. Clark, D. D. Willson, D. R. A comparisson of militar and commercial security policies.
Proceedings of the IEEE sysmposium on security and privacy. 1987.

10. Java Agent Development Framework. http://jade.cselt.it
11. Moraitis, P., Spanoudakis, N. Combining Gaia and JADE for Multi-Agent Systems

Development. 4th International Symposium "From Agent Theory to Agent
Implementation" (AT2AI4), in: Proceedings of the 17th European Meeting on Cybernetics
and Systems Research (EMCSR 2004), Vienna, Austria, April 13 - 16, 2004.

12. Moraitis, P., Petraki, E., Spanoudakis, N. Engineering JADE Agents with the Gaia
Methodology. In R. Kowalszyk, et al. (eds), “Agent Technologies, Infrastructures, Tools,
and Applications for e-Services”, LNAI 2592, Springer-Verlag, 2003, pp. 77-91.

13. Java Agent Development Framework. Jade Security Guide. 2005.
14. @lis technet project. http://www.alis-technet.org.

96 Z. Andrade, Ma. Junco, J. Ramírez, J. Tejeda, E. Espinosa

